Python & Java Teachers

X
BRADFIELD COLLEG

SCHOOL OF CODING AN AL 2

RN Funded by the { }
x K Erasmus+ Programme
* ofthe European Union- python & Java 4 Teachers

Introduction

You probably think that art
and programming couldn’t be
more unalike, but actually

they might be more similar

than you think!

There are many modern artists
whose main medium is code. For
example: Mark Dorf, Josh Davis
and Kyle McDonald.

Here are a few websites that merge

together are and programming:

» Silk — Interactive Generative Art
(weavesilk.com)

» Dream by WOMBO

R Funded by the
o Erasmus+ Programme
o x of the European Union

Python & Java 4 Teachers

http://weavesilk.com/
https://app.wombo.art/

Funded by the

Erasmus+ Programme

T k of the European Union

* For this project you are going to use you
fashion skills to create a wardrobe,
customizable to however you would like to
dress!

Extension:

* Try finding your own photos to use in place of
the clothing used already.

Funded by the
Erasmus+ Programme

P r" 0 c e S S of the European Union

This program should:

v Import the Tkinter graphics library,

vUse subroutines to create processes for the
buttons,

v'Successfully import photos to use for the
wardrobe.

Funded by the
Erasmus+ Programme
of the European Union

Python Libraries

Python Libraries are a set of useful functions that eliminate the need for writing codes
from scratch.

They can be brought into the

Trom random iI‘jI:.C]ft * program using the ‘“import’ keyword
and can save valuable time when
writing complex programs.

1mport Tkinter

,]] One common example of a python
1mport statistics library is the ‘random’ module,

O O Ll [=

used often for generating pseudo-
random numbers

Funded by the
Erasmus+ Programme
t e p of the European Union

Importing the Tkinter library

Tkinter is a Python graphics library that is most commonly used

for creating GUIs - graphical user interfaces - allowing us to
make interactive menus.

import tkinter
from tkinter import *

e Lad [N =

We will be importing it to create buttons and images that are

displayed on the screen.

Funded by the
Erasmus+ Programme
of the European Union

Subroutines

Subroutines are sequences of
instructions that perform a specific
task.
It may be easier to think of them as
mini-programs within a large program.
Subroutines consist of modules of
code that perform different tasks.
If these tasks are repeated
throughout the program, they can be

WL EECRNES SHOROUELNES: : 1 def nameOfSubroutine(): #declaring
Each subroutine is given a unique v print("hello")

name so that it can be called and . :
executed quickly throughout the % name0fSubroutine() Hcalllng
program, without having to write the

code again.

This reduces the size of the code,

making the program more logical and

easier to read and maintain.

Step 2

Defining the subroutine

This is thee first subroutine that will be bound to the button to the left
of the t-shirt. The variable ‘currentShirt’ is then made global so that we
can access the shirt - this is the variable that controls which the image 1is
displayed - from within the subroutine.

Sldef leftShirt():
6 global currentShirt

7

8 position = shirts.index (currentShirt)
9 position -= 1
if position < 0O:
11 position = len(shirts) - 1
12
13 currentShirt = shirts|[position]
14 labelShirt.configure (image=currentShirt)
15 labelShirt.photo = currentShirt
16 print ("updated")

Lines 8-11 finds the position of the shirt within the list of possible
shirts. When you press the button it will move backwards through the list,
however, if the position is less than zero, the position will be reset to

the end of the list. Lines 13-18 updates the image of the ‘labelShirt’
object so that it is now a different colour shirt. This can also help with

the debugging of the program.

Funded by the

Erasmus+ Programme
of the European Union

Funded by the
e p Erasmus+ Programme

of the European Union

Defining the second subroutine

The next subroutine is coded in then same process as the

previous subroutine, but should go through the list in the
opposite direction.

18|def rightShirt():

19 global currentShirt

20

21 position = shirts.index (currentShirt)
22 position += 1

23

24 if position »= len(shirts):

25 position = 0

26

27 currentShirt = shirts[position]

28 labelShirt.configure (image=currentShirt)
29 labelShirt.photo = currentsShirt

30 print ("updated")

Again when the button is pressed, it will move forwards through
the list. However, if the position is greater than the length

of the ‘shirts’ array, and is therefore not representative of
an item within the list, the position resets to zero.

Funded by the

Erasmus+ Programme

S t e p Ll of the European Union

Defining the third subroutine

This is the third subroutine, and it will be used for the left
button for the trousers. It follows the same principle as step 1

but all of the variables are now trouser related rather than
shirt related.

3Z2|detf leftTrouser/() : *
33 global currentTrousers

34

35 position = trousers.index (currentTrousers)

36 position —= 1

37 1f position < O:

38 position = len(trousers) - 1

39

40 currentTrousers = trousers[position]

11 labelTrouser.configure (image=currentTrousers)
42 labelTrouser.photo = currentTrousers

43 print ("updated")

Funded by the
Erasmus+ Programme
S t e p 5 of the European Union

Defining the fourth subroutine

The last subroutine is created for the right button in our
wardrobe program. The process is again the same as step 3 but

with trouser related variables, and it also moves up the list
instead of negatively.

45|def rightTrouser():

46 global currentTrousers

47

48 position = trousers.index(currentTrousers)
49 position += 1

50

51 1T position >= len(trousers):

52 position = 0

53

54 currentTrousers = trousers|[position]

55 labelTrouser.configure (image=currentTrousers)
56 labelTrouser.photo = currentTrousers

57 print ("updated")

KR Funded by the
A Erasmus+ Programme
t e p gl of the European Union

Initializing the Tkinter window

This is the code that initialises the Tkinter window. We store

the window (represented by Tk()) in the master variable.

tl0lmaster = tkinter.Tk()
tllmaster.title("FPython Wardrobe")
o/ master.geometry ("500x500™)

The title is then changed and the geometric properties of that

window to customise its appearance and size.

Funded by the
Erasmus+ Programme
S t e p ‘? of the European Union

Storing the Images

Lines 64-67 creates variables to store the shirts, put the

relative path to the image. The same is then done for the
trousers.

64|shirtl = PhotoImage (file='images/shirtl.gif'")
65/shirt2 = PhotoImage (file='images/shirtZ.gif'")
66|shirt3 = PhotoImage (file='images/shirt3.gif'")
67

68 trouserl
69 trouser2
70/ trouser3
71
72|imgLeft = PhotoImage (file="images/left.png')

73|imgRight = PhotolImage (file="images/right.png')

PhotoImage (file="images/Blue Jeans.png')
PhotoImage (file="'1images/Grey Jeans.png')
PhotoImage (file="'images/Orange Jeans.png')

Lines 72 and 73 import the images for the left and right arrow

buttons.

Funded by the
e p Erasmus+ Programme

of the European Union

Storing and displaying the images

These next lines make lists to store the shirt images and

trouser images. This then sets up the initial shirt and trouser
that will be displayed when the program first runs.

T5/shirts = [shirtl, shirt2, shirt3]
Je|lcurrentShirt = shirts|[1]

Jlltrousers = [trouserl, trouser?Z, trousersi]
T8|currentTrousers = trousers|[1]

79

Funded by the
Erasmus+ Programme
S t e p q of the European Union

Displaying the grid layout

Now we are using a grid layout to put the button on the screen.

A button is created in the master window, with the width, height
and command corresponding subroutine.

g0|buttonLeftShirt=tkinter.Button(master, image=imgleft, width=100, height=100, command=leftShirt) #left
gl|buttonleftShirt.grid(row=1, column=0)

82
33|buttonRightShirt=tkinter.Button (master, image=imgRight, width=100, height=100, command=rightShirt) #right
g4|buttonRightShirt.grid(row=1, column=3)

85

36/labelshirt = tkinter.Label (master, image=currentShirt, width=250, height=250)
87/1labelshirt.grid(row=1, column=2)

The left and right arrows are set first, then the image for the

correct shirt.

I
o
VAAY

Funded by the
Erasmus+ Programme
S t e p].l D of the European Union

Displaying the grid layout pt2

The buttons and label for trousers follow the same process as

previously, the only difference is that the trouser related
subroutines have been called.

90

91| buttonLeftTrouser=tkinter.Button(master, image=imgLeft, width=100, height=100, command=leftTrouser) #left
92/buttonLeftTrouser.grid(row=2, column=0)

93
94/ buttonRightTrouser=tkinter.Button (master, image=imgRight, width=100, height=100, command=rightTrouser) #right
95/ buttonRightTrouser.grid (row=2, column=3)

96

97/ labelTrouser = tkinter.Label (master, image=currentTrousers, width=250, height=250)
95| labelTrouser.grid(row=2, column=2)

99

Here the pen up() function is used to make sure we don’t draw
any excessive lines when giving the turtle its initial

placement. The turtle needs to be moved down so that when the
face is drawn it doesn’t cut off the ends of the screen.

What the code will look like..

M Mo A P
=
dfR><PN==N\~>

Rl Funded by the

° A Erasmus+ Programme
c 0 n c 1 u S 1 0 n of the European Union
This program should:

v'You should confidently be able to import the
Tkinter graphics library,

v'You should be able to create subroutines with
processes for the buttons,

v'You should successfully be able to import
photos from the folder €‘images’.

R Funded by the { }
W Crasmus+ Programme
*a of the European Union
Python & Java 4 Teachers

