

Custom

Wardrobe
Level 2 - Python

Introduction
You probably think that art
and programming couldn’t be
more unalike, but actually
they might be more similar
than you think!

There are many modern artists
whose main medium is code. For
example: Mark Dorf, Josh Davis
and Kyle McDonald.

Here are a few websites that merge
together are and programming:
➢ Silk – Interactive Generative Art

(weavesilk.com)
➢ Dream by WOMBO

http://weavesilk.com/
https://app.wombo.art/

Task

• For this project you are going to use you
fashion skills to create a wardrobe,
customizable to however you would like to
dress!

Extension:

• Try finding your own photos to use in place of
the clothing used already.

Process
This program should:

✓Import the Tkinter graphics library,

✓Use subroutines to create processes for the
buttons,

✓Successfully import photos to use for the
wardrobe.

Python Libraries

Python Libraries are a set of useful functions that eliminate the need for writing codes
from scratch.

They can be brought into the
program using the ‘import’ keyword
and can save valuable time when
writing complex programs.

One common example of a python
library is the ‘random’ module,
used often for generating pseudo-
random numbers

Step 1
Importing the Tkinter library

Tkinter is a Python graphics library that is most commonly used
for creating GUIs – graphical user interfaces – allowing us to

make interactive menus.

We will be importing it to create buttons and images that are
displayed on the screen.

Subroutines

#Defining a subroutine:
def nameOfSubroutine():

code goes here
#Calling a subroutine:
nameOfSubroutine()

Subroutines are sequences of
instructions that perform a specific
task.
• It may be easier to think of them as

mini-programs within a large program.
• Subroutines consist of modules of

code that perform different tasks.
• If these tasks are repeated

throughout the program, they can be
written as subroutines.

• Each subroutine is given a unique
name so that it can be called and
executed quickly throughout the
program, without having to write the
code again.

• This reduces the size of the code,
making the program more logical and
easier to read and maintain.

Step 2
Defining the subroutine

This is thee first subroutine that will be bound to the button to the left
of the t-shirt. The variable ‘currentShirt’ is then made global so that we
can access the shirt – this is the variable that controls which the image is

displayed – from within the subroutine.

Lines 8-11 finds the position of the shirt within the list of possible
shirts. When you press the button it will move backwards through the list,
however, if the position is less than zero, the position will be reset to
the end of the list. Lines 13-18 updates the image of the ‘labelShirt’

object so that it is now a different colour shirt. This can also help with
the debugging of the program.

Step 3
Defining the second subroutine

The next subroutine is coded in then same process as the
previous subroutine, but should go through the list in the

opposite direction.

Again when the button is pressed, it will move forwards through
the list. However, if the position is greater than the length
of the ‘shirts’ array, and is therefore not representative of

an item within the list, the position resets to zero.

Step 4
Defining the third subroutine

This is the third subroutine, and it will be used for the left
button for the trousers. It follows the same principle as step 1
but all of the variables are now trouser related rather than

shirt related.

Step 5
Defining the fourth subroutine

The last subroutine is created for the right button in our
wardrobe program. The process is again the same as step 3 but
with trouser related variables, and it also moves up the list

instead of negatively.

Step 6
Initializing the Tkinter window

This is the code that initialises the Tkinter window. We store
the window (represented by Tk()) in the master variable.

The title is then changed and the geometric properties of that
window to customise its appearance and size.

Step 7
Storing the Images

Lines 64-67 creates variables to store the shirts, put the
relative path to the image. The same is then done for the

trousers.

Lines 72 and 73 import the images for the left and right arrow
buttons.

Step 8
Storing and displaying the images

These next lines make lists to store the shirt images and
trouser images. This then sets up the initial shirt and trouser

that will be displayed when the program first runs.

Step 9
Displaying the grid layout

Now we are using a grid layout to put the button on the screen.
A button is created in the master window, with the width, height

and command corresponding subroutine.

The left and right arrows are set first, then the image for the
correct shirt.

Step 10
Displaying the grid layout pt2

The buttons and label for trousers follow the same process as
previously, the only difference is that the trouser related

subroutines have been called.

Here the pen up() function is used to make sure we don’t draw
any excessive lines when giving the turtle its initial

placement. The turtle needs to be moved down so that when the
face is drawn it doesn’t cut off the ends of the screen.

What the code will look like…

Conclusion

This program should:

✓You should confidently be able to import the
Tkinter graphics library,

✓You should be able to create subroutines with
processes for the buttons,

✓You should successfully be able to import
photos from the folder ‘images’.

Congratulations!
You have created your own custom wardrobe

